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Introduction

A nearest neighbor query, given a target point and a set of points, identifies the point in the set which
has the shortest euclidean distance from the target point. Such queries have many applications
including uses in Artificial Intelligence. For example, nearest neighbor queries can be used for data
classification AI programs. After being trained on a set of preclassified data, a k-nearest neighbor
based classification algorithm will look at the classification of the k nearest datapoints to a new data
point that needs to be classified, and can use the most common classification of its k neighbors to
predict the classification of the target [4]. Another use of nearest neighbor queries is in geographic
searches. Such queries can solve a ”restaurants near me” map search by employing a k nearest
neighbor query to provide the k restaurants nearest to a person’s current location.

The Algorithm

This query can clearly be solved in linear time by calculating the distance between each point and
the target. However, for large data sets we hope to query in sublinear time. While many techniques
have been developed for this, this paper explores the use of k-d trees for solving nearest neighbor
queries.

A k-d trees is a data structure that can be used to store muilti-dimensional points sorted by
all dimensions in constant space (as each point is stored at most twice in the tree). To query for
the nearest neighbor, a modified range query can be used. Range queries can identify all points in
a given k-dimensional range in O(n1− 1

d + k) time, where k is the number of points reported, and d
is the number of dimensions [1]. When searching for the nearest neighbor, however, it is not known
what range will contain that neighbor and no additional points.

A k-d tree approximate nearest neighbor query explores down the k-d tree based on which re-
gion the target point lies in. While this technique will generally produce a point near our target,
there are instances when the neighbor does not lie in the same region as the target, as is seen in
Figure 1. To accommodate for this, we must sometimes search both children of a node. Let ℓ be
the line dividing a node’s two children’s regions. Then at that node in the search, if the ℓ is nearer
to the target than the current nearest known point, then there is the chance that a nearer neighbor
exists in the region not containing the target. Thus in this case we must search down both children
of the node. Otherwise, we need only search the branch of tree who’s region contains the target.

Advantages

This method works very well for 2-dimensional nearest neighbor queries. In this case, it can perform
queries in average O(logn) time [3] and is an optimal search, in that it always returns the nearest
neighbor. Note that in some node formations this runtime is higher due to the need to search both
children of many nodes, as is this case in the example shown in figure 2 Due to this efficient runtime
and linear storage space, k-d trees are a common data structures used to perform 2-dimensional
queries. In the implementation of this algorithm, logarithmic runtime can be observed since as
the input size n doubles, the runtime generally grows slowly by a constant, not a multiple. The
runtime claim is easy to observe when considering the number of nodes searched by each query.
As the input size doubles, the average number of nodes searched increases by approximately 2.5,
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Figure 1: Region diagram for a k-d tree. Point t is target. Nearest neighbor to t is p2, which lies
outside of the shaded region containing t.

this constant addition can be observed even for very large inputs. The exploration of any one
node takes constant time, thus the logarithmic number of nodes being visited supports the claimed
logarithmic runtime. Runtimes and node exploration counts can be viewed in Table 1.

Figure 2: Instance on greater than logarithmic query time. All regions but the lower left must
be explored, as they are all within the d of the the target (blue), where d is the distance between
target and its nearest neighbor (red), as can be seen by the dotted circle of radius d.

Disadvantages

The biggest drawback of using k-d trees for nearest neighbor queries is their inefficiency when
querying higher dimensional spaces. In higher dimensions, this search can approach linear time,
in which case brute-force algorithms perform a simpler search with the same accuracy and similar
runtime[3]. Due to this massive drawback, alternative methods for nearest neighbor queries are
a large field of research. Some research has been conducted on how to alter k-d tree queries for
improved runtime performance. Many methods recently developed solve an approximate nearest
neighbor query instead, as solving the problem sub-optimally can lower computational costs.

For approximate nearest neighbor queries, a subset of the points are used. Obviously, in searching
only a subset of the points, the exact nearest neighbor may be excluded. With careful selection
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Table 1: Correlation Between Input Size n, Number of Nodes Visited, and Runtime
n nodes visited (mean over 100 tests) runtime (total microseconds over 100 tests)

1 1.0000 1030

2 2.4900 488

4 5.0430 0

8 7.3667 498

16 10.1522 1720

32 14.2903 885

64 15.4211 953

128 18.4536 0

256 21.8351 496

512 26.5876 1028

1024 24.2371 496

2048 33.0000 2777

4096 28.7300 2492

8192 28.1800 3470

16384 35.4100 3741

of the subset, however, it can be guarunteed that the approximate nearest neighbor found will
be no more than c further from the target point than its exact nearest neighbor[3], where c is a
value predetermined depending on desired efficiency. Other research uses alternate data structures,
including randomized partition trees[2], which split on randomly directed lines instead of the axis-
parallel lines used by the k-d tree. While these approaches are computationally less expensive, their
implementations are more complicated, meaning k-d trees are a good data structure when runtime
is not a concern or when a low-dimension search space is being used.
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